Zeta functions of elliptic cone operators

نویسنده

  • Gerardo A. Mendoza
چکیده

This paper is an overview of aspects of the singularities of the zeta function, equivalently, of the small time asymptotics of the trace of the heat semigroup, of elliptic cone operators. It begins with a brief description of classical results for regular differential operators on smooth manifolds, and includes a concise introduction to the theory of cone differential operators. The later sections describe recent joint work of the author with J. Gil and T. Krainer on the existence of the resolvent of elliptic cone operators and the structure of its asymptotic behavior as the modulus of the spectral parameter tends to infinity within a sector in C on which natural ray conditions on the symbol of the operator are assumed. These ideas are illustrated with examples. Mathematics Subject Classification (2000). Primary: 58J50, 35P05, Secondary: 47A10, 58J35.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adiabatic Limits of Eta and Zeta Functions of Elliptic Operators

We use the calculus of adiabatic pseudo-differential operators to study the adiabatic limit behavior of the eta and zeta functions of a differential operator δ constructed from an elliptic family of operators with base S. We show that the regularized values η(δt, 0) and tζ(δt, 0) have smooth limits as t → 0, and we identify the limits with the holonomy of the determinant bundle, respectively wi...

متن کامل

Resolvents of Cone Pseudodifferential Operators, Asymptotic Expansions and Applications

We study the structure and asymptotic behavior of the resolvent of elliptic cone pseudodifferential operators acting on weighted Sobolev spaces over a compact manifold with boundary. We obtain an asymptotic expansion of the resolvent as the spectral parameter tends to infinity, and use it to derive corresponding heat trace and zeta function expansions as well as an analytic index formula.

متن کامل

On the Singularities of the Zeta and Eta Functions of an Elliptic Operator

Let P be a selfadjoint elliptic operator of order m > 0 acting on the sections of a Hermitian vector bundle over a compact Riemannian manifold of dimension n. General arguments show that its zeta and eta functions may have poles only at points of the form s = k m , where k ranges over all non-zero integers ≤ n. In this paper, we construct elementary and explicit examples of perturbations of P w...

متن کامل

Analytic Solution for Hypersonic Flow Past a Slender Elliptic Cone Using Second-Order Perturbation Approximations

An approximate analytical solution is obtained for hypersonic flow past a slender elliptic cone using second-order perturbation techniques in spherical coordinate systems. The analysis is based on perturbations of hypersonic flow past a circular cone aligned with the free stream, the perturbations stemming from the small cross-section eccentricity. By means of hypersonic approximations for the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011